CHEMISCHE BERICHTE

In Fortsetzung der

BERICHTE DER DEUTSCHEN CHEMISCHEN GESELLSCHAFT

herausgegeben von der

GESELLSCHAFT DEUTSCHER CHEMIKER

113. Jahrg. Nr. 8

S. 2589-2832

Synthese bicyclischer, nicht-konjugierter Polyene. Stereochemie und transanulare Wechselwirkungen^{1a)}

Hans-Dieter Martin*, Constanze Heller, Bernhard Mayer und Hans-Dieter Beckhaus^{1b})

Institut für Organische Chemie der Universität Würzburg, Am Hubland, D-8700 Würzburg

Eingegangen am 23. November 1979

Die Synthese der bicyclischen Polyene 8-11 gelang durch Spaltung der gespannten σ -Bindung der Dreiring-Dimethanole **14b/15b** bzw. der Vierring-Dimethanol-bis(methansulfonate) **16c/17c** mit P₂I₄ bzw. Zn/KBr. Aus ¹H-NMR-spektroskopischen Untersuchungen wird auf eine bevorzugte *endo*-Konformation für **8** bzw. eine verdrillte Konformation für **10** geschlossen. Das für diese Geometrien erwartete Ausmaß an transanularer Konjugation ist in Einklang mit den photoelektronen-spektroskopischen Ergebnissen.

Synthesis of Bicyclic Non-conjugated Polyenes. Stereochemistry and Transanular Interactions^{1a)}

The synthesis of the bicyclic polyenes 8 - 11 has been achieved by cleavage of the strained σ -bonds of suitable cyclopropanedimethanols 14b/15b and cyclobutanedimethanol-bis(methanesulfonates) 16c/17c using P₂I₄ (14b/15b) or Zn/KBr (16c/17c), respectively. From an inspection of the ¹H NMR spectra a preferred *endo*-conformation (chair) for 8 and a twisted structure (twist-chair) for 10 is proposed. The predicted extent of transanular conjugation for these geometries is in accordance with the photoelectron spectroscopic measurements.

Wechselwirkungen zwischen nicht-konjugierten Doppelbindungen mit ein oder zwei Methylengruppen als formalen Isolatoren (Topologie 1 bzw. 2) sind von erheblicher Bedeutung für die Reaktivität oder spektroskopischen Eigenschaften dieser Polyene. Als typische Beispiele seien die Cyclisierung des Humulens $(3)^{2,3}$ zu 4 und die Aufspaltung der ersten drei Ionisationspotentiale des Isopropylidennorbornadiens $(5)^{4}$ genannt.

Chem. Ber. 113, 2589 – 2600 (1980) © Verlag Chemie, GmbH, D-6940 Weinheim, 1980 0009 – 2940/80/0808 – 2589 \$ 02.50/0

Es ist einsichtig, daß sowohl direkte through-space-Überlappung (Homokonjugation) als auch indirekte through-bond-Kopplungen (Hyperkonjugation) die chemischen Eigenschaften und spektroskopischen Daten kontrollieren⁵⁾. Da aus der photoelektronen-spektroskopischen Analyse des homokonjugierten Triens 6 eine 1,3-Wechselwirkung (Typ 1) mit einem Wechselwirkungsparameter $\langle \pi_1 | \mathscr{H} | \pi_2 \rangle = m \cdot \beta/2$ ($\beta = -2.5 \text{eV}, m \approx 0.3$) resultierte⁶⁾, war es auf den ersten Blick überraschend, daß sich das Spektrum des Triens 7 als eine Superposition der Spektren von Norbornen und 1,3-Cycloheptadien erwies⁶⁾.

Die Abwesenheit jeder experimentell beobachtbaren Wechselwirkung zwischen π_1^s und π_2^s in 7 wurde auf die beträchtliche Energiedifferenz von 1.6 eV zwischen diesen Orbitalen zurückgeführt, welche selbst eine Homokonjugation mit $m\beta = 0.25\beta$ nicht mehr erkennen läßt. Alle Effekte, die zu einer Verminderung dieser Energiedifferenz führen, sollten somit das Ausmaß der Homokonjugation vergrößern. Unterbricht man deshalb die direkte Konjugation des Butadienteils in 7 durch Einbau von CH₂-Iso-

latoren, behält aber die homokonjugative 1,3-Wechselwirkung bei, so lassen sich die Triene 8 und 10 als möglicherweise effizientere transanular-konjugierte Polyene konzipieren. Wir berichten hier über Synthese und NMR- bzw. PE-spektroskopische Eigenschaften von 8 - 11.

Synthese

Zwei mögliche Synthesestrategien standen zur Diskussion: Ausgehend von Bicyclo[n.2.1]alkanen 12 (n = 3,4) könnten die exocyclischen Methylengruppen eingeführt werden, oder, beginnend mit Tricyclo[n.2.1.0^{2,n+1}]alkanen 13, werden durch Spaltung der 2,n + 1-Brücke die Methylendoppelbindungen erzeugt. Da letzteres Verfahren in der Regel brauchbare Ausbeuten an Dienen ergibt⁷, wurde dieser Weg zuerst eingeschlagen.

Das Diol 14b⁸⁾ gibt bei der *Kuhn-Winterstein*-Reaktion⁷⁾ ($P_2I_4/CS_2/Pyridin$) mit 15% Ausbeute eine außerordentlich zur Polymerisation neigende Substanz, die durch die analytischen und spektroskopischen Daten als 8 ausgewiesen ist und nur bei tiefen Temperaturen längere Zeit aufbewahrt werden kann. Analog läßt sich das in der 6,7-Position gesättigte Dien 9 aus 15a gewinnen.

Jahrg. 113

Das Diels-Alder-Addukt 16a⁹⁾ wird über das Diol 16b in das Methansulfonat 16c umgewandelt, welches mit aktiviertem Zink und KBr in DMSO¹⁰⁾ mit 35% Ausbeute zu 10 gespalten wird. Analoge Umsetzungen ausgehend von 17a führen zum Dien 11, dessen Abtrennung von einem nicht identifizierten Nebenprodukt jedoch Schwierigkeiten bereitet.

NMR-Spektren und Konformation

Für 8 - 11 sind prinzipiell mehrere Konformere zu diskutieren: Die *exo-* und *endo-*Geometrien 8x bzw. 8n (Boot bzw. Sessel, C_s -Symmetrie) sowie die eingeebnete Form 8p, die entsprechenden Anordnungen 10x und 10n (C_s -Symmetrie) sowie 10t, das entfernt an die Twist-Chair-Konformation des Cycloheptans erinnert und unter mehreren möglichen verdrillten Boot- und Sesselkonformationen als Vertreter herausgegriffen ist. Die Übertragung der konformativen Verhältnisse der bicyclischen Stammverbindungen auf 8 bzw. 10 ohne weitere Betrachtungen ist problematisch.

Da sich die einzelnen Konformeren im Hinblick auf transanulare π,π -Wechselwirkungen beträchtlich unterscheiden, ist die Kenntnis der Vorzugskonformation in diesem Zusammenhang bedeutsam.

Das 90-MHz-¹H-NMR-Spektrum von **8** (Abb. 1) erlaubt einige Zuordnungen. Die beiden Tripletts ($J \approx 2.5$ Hz mit kleineren zusätzlichen Kopplungen) bei 4.68 und 4.50 ppm sind eindeutig den olefinischen Protonen der exocyclischen Methylengruppen zugehörig. Das AB-System der 3-Methylengruppe zeigt im A-Teil Quintett-Struktur und wird dort vom breiten Dublett ($J \approx 5$ Hz) der Brückenkopfprotonen überlagert. Der B-Teil läßt die charakteristische geminale Kopplung erkennen, die mit ²J = 17 Hz (vermutlich negativ) die erwartete Größenordnung erreicht und den Einfluß der benachbarten π -Bindungen anzeigt. Das Hochfeld-AB-System schließlich kann 8s-H (A-Teil, Dublett von Tripletts) und 8a-H (B-Teil) zugeordnet werden, wie eine Betrachtung der Torsionswinkel zwischen diesen und den Brückenkopfprotonen lehrt. Mit gewissen Einschränkungen können dem NMR-Spektrum jedoch weitergehende Informationen und Hinweise auf die vorherrschende Konformation entnommen werden. Tab. 1 enthält die am Modell gemessenen, für eine Zuordnung relevanten Winkel von 8x, 8n und 8p.

Abb. 1. 90-MHz-¹H-NMR-Spektren von 8 und 9. Bei x Verunreinigung

Tab. 1	. Am Modell	gemessene	Torsionswinke	l φ. φ(H,π)) gibt den	Winkel zwischen	Allylprotonen
	und C-2-π-	Orbital an ((parallel: 0°, o	rthogonal,	s-cis: 90°	, Definition s. L	.it. ^{11a)})

	8 x	8 n	8 p
φ(3-Η,π)	5	73	30
$\phi(3'-H,\pi)$	125	190	150
$\varphi(1-H,\pi)$	60	90	75
$\phi(1-H,C-1,C-8,8s-H)$	45	45	45
φ(1-H,C-1,C-8,8a-H)	80	80	80

		8x		8 n	8	p
Lit.	11 a)	11b)	11 a)	11b)	11a)	11 b)
${}^{4}J_{1,91}$	-1.0	-1.0	0 + 0.7	-0.5	-0.2	-0.6
${}^{4}J_{3.9t}^{1,9c}$	-3.5	-3.0	+0.6	-0.2	-2.3	-2.5
${}^{4}J^{3,9c}_{3,9c}$	-3.0	-2.5	0	-0.6	- 2.3	-2.0
4J _{3',91}	-0.5	-1.0	-3.5	-2.5	-2.3	-2.5
*J _{3',9c}	-0.6	-1.3	-3.0	-2.5	-2.3	-2.0
${}^{3}J_{18}$	4	-6	4	6	4 -	- 6
${}^{3}J_{1,8a}^{,53}$	0	-3	0	- 3	0 -	- 3

In Tab. 2 finden sich die aufgrund bekannter Winkelabhängigkeit vorhergesagten Kopplungskonstanten.

Tab. 2. Mit Hilfe der Winkel aus Tab. 1 für 8x, 8n und 8p vorhergesagte^{11a,b)}

Doppelresonanzexperimente bestätigen folgende Kopplungen: a) Beide Olefinprotonen 9c und 9t koppeln mit ein und demselben allylischen Proton an C-3 (J = 2.5 Hz), b) die Kopplung von 9c,t-H mit 1-H bzw. dem anderen Allylproton an C-3 ist ≤ 1 Hz, c) 1-H koppelt mit nur einem Brückenproton an C-8 (J = 5 Hz), d) die Brückenprotonen 8s-H und 8a-H zeigen eine geminale Kopplung von J = 10 Hz, e) die geminale Kopplung $J_{3,3'} = 17$ Hz.

Aus diesen Daten kann eine eindeutige Konformationszuordnung nicht getroffen werden, die relevanten Kopplungsunterschiede der Konformeren **8x** und **8n** sind für diesen Zweck zu gering. Die vorliegenden Daten sind jedoch eher mit **8n** oder **8x** vereinbar als mit **8p**, da in letzterem eine merkliche Kopplung beider Allylprotonen 3-H und 3'-H mit 9c-H bzw. 9t-H auftreten sollte, was offensichtlich nicht beobachtet wird. Für **8n** beispielsweise würden sich dann folgende Aussagen ergeben: a) Die Triplett-struktur der 9t-H- und 9c-H-Signale rührt her von ${}^{4}J_{9t,3'} = {}^{4}J_{9c,3'} = {}^{2}J_{9t,9c} = 2.5$ Hz; eines der beiden Olefinprotonen zeigt eine zusätzliche Kopplung von ungefähr 1 Hz, vermutlich mit 3-H, b) 3'-H erscheint seinerseits als zum Quintett aufgespaltener A-Teil (${}^{2}J_{3',3} = 17$ Hz), der vom Dublett 1-H/5-H (${}^{3}J_{1,8s} = 5$ Hz) überlagert wird, c) das 5-Linien-Multiplett um 2.2 ppm ist dem A-Teil 8s-H zuzuordnen (${}^{3}J_{1,8s} = 5$ Hz, ${}^{2}J_{8a,8s} = 10$ Hz).

Im Dien 9 sind die Kopplungsverhältnisse für den Molekülteil C-2, C-3, C-4 denen in 8 völlig entsprechend, so daß die oben abgeleiteten Ergebnisse auf 9 übertragen werden können. Welche der Konformationen 10x, 10n oder 10t bei den Bicyclen 10 und 11 vorherrscht, ist nicht klar. Die durch das NMR-Spektrum angezeigte C_s -Symmetrie ist beispielsweise mit einem raschen Konformerengleichgewicht zwischen 10t und seinem Enantiomeren vereinbar. Da die vier allylischen Methylenprotonen als breites Singulett erscheinen, kann ihnen keine Information entnommen werden. Lediglich die in 8 bereits beobachtete Kopplung zwischen 1-H und 8s-H ist in 10 mit ${}^{3}J_{1,9s} = 6$ Hz wiederzufinden. Für Bicyclo[4.2.1]nonan kann die *endo*-Konformation angenommen werden¹²⁾. Das breite Singulett bei $\delta = 2.25$ in 10 scheint jedoch eher für ein Konformerengleichgewicht 10t/10t' zu sprechen, doch ist auch das Gleichgewicht 10x/10n nicht völlig auszuschließen.

Photoelektronenspektren

Tab. 3 enthält die den He(I)-Photoelektronenspektren entnommenen vertikalen Ionisierungsenergien.

	IE _{1,v}	IE _{2,v}	IE _{3,v}
8 9 10	≈ 8.90 8.90	≈ 9.00 <u> </u>	.30 9.25

Tab. 3. Vertikale Ionisierungsenergien in eV für 8-10. Werte auf 0.05 gerundet

Für die Diskussion werden folgende Bezeichnungen verwendet: π_1 , π_2 sind die π -Orbitale der exocyclischen Doppelbindungen in **8**, **9** und **10t**, die in **8** und **9** aufgrund vorherrschender C_s -Symmetrie entartet sind, in **10t** hingegen nicht (Zeitskala des PE-Experiments). π_3 stellt das π -Orbital der endocyclischen Doppelbindung in **8** bzw. **10t** dar. Wechselwirkungen zwischen nicht-konjugierten exocyclischen oder endocyclischen Doppelbindungen können in through-bond- und through-space-Anteile aufgespalten werden¹³⁾. Diese Wechselwirkungen können gleich- oder gegenläufig sein, und dementsprechend werden die Gesamteffekte beträchtlich oder verschwindend sein.

Dien 9: Für die Homo- bzw. Hyperkonjugation zwischen π_1 und π_2 ist die Konformation irrelevant. Sowohl in 9x als auch 9n (Formeln analog zu 8x, n) wird die through-space-Wechselwirkung durch den 2,4-Abstand (etwa 0.24 nm), den Winkel zwischen den Orbitalachsen (etwa 35°) und das Überlappungsintegral (etwa 0.05) bestimmt. Eine Aufspaltung der beiden π -Niveaus mit $\pi_- > \pi_+$ und $\Delta \varepsilon_{\pi} \approx 0.4$ eV wäre ein realistischer Erwartungswert. Hyperkonjugative Wechselwirkung von $\pi_+ = 1/\sqrt{2}$ $(\pi_1 + \pi_2)$ mit σ_{CH} muß $\Delta \varepsilon_{\pi}$ verkleinern. Die beobachtete Allylkopplung (σ - π -Mechanismus) ${}^4J_{3',9t} = {}^4J_{3',9c} = 2.5$ Hz bestätigt die vom Modell her erwartete through-bond-Kopplung und erklärt den kleinen, im Spektrum kaum mehr aufgelösten Energieunterschied zwischen π_- und π_+ . Da beide Konformere 9x und 9n in dieser Hinsicht gleiches PE-spektroskopisches Verhalten zeigen sollten, ist eine Entscheidung zugunsten einer Konformation mit dieser Methode nicht möglich. In Analogie zu 8 (s. u.) wird jedoch eine *endo*-Geometrie favorisiert.

Trien 8: Zusätzlich zur oben diskutierten Wechselwirkung zwischen π_1 und π_2 ist nun noch das Mischen von π_3 mit $\pi_+ = 1/\sqrt{2}$ ($\pi_1 + \pi_2$) zu berücksichtigen (die in π_+ enthaltenen σ -Beiträge sind der Einfachheit wegen weggelassen). Diese Homokonjugation ist deutlich konformationsabhängig, sie sollte in 8n verschwindend sein, in 8x jedoch ein Aufspalten zwischen π_3 und π_+ um 2 $H_{ij} = \sqrt{2\beta}$ verursachen (β ist das 2,7(4,6)-Resonanzintegral). Aus Untersuchungen an 5-Methylennorbornen wurde $\beta \approx -0.4$ eV abgeleitet¹³⁾. Die ursprünglich nahezu entarteten Orbitale π_3 und π_+ sollten demzufolge um etwa 0.5 eV aufgespalten sein. Der experimentelle Abstand ist jedoch merklich kleiner. Diese Ergebnisse sind eher mit der *endo*-Konformation 8n zu vereinbaren (Abb. 2). In Tab. 4 ist der berechnete Energieunterschied zwischen 8x und 8n angegeben. Auch diese Daten stützen das Vorliegen einer *endo*-Geometrie^{12,14}).

		8 x	8 n	Δ (kcal/mol)
EHT (eV)		-916.43	- 916.58	3.5
CNDO/2 (au)		- 80.255	-80.262	4.4
MNDO, $\Delta H_{\rm f}^{\circ}$ (kcal/mol)		68.5	65.0	3.5
Kraftfeld, ΔH_{c}^{o}		62.9	60.1	2.8 ^{16a})
(kcal/mol)		50.6	48.9	1.7 ^{16b)}
P1 2 V	SAS	S	SA	S A S
<u> </u>		1	11	

Tab. 4. Nach verschiedenen Methoden berechnete Totalenergien bzw. Bildungswärmen von 8x und 8n

Abb. 2. Experimentelle und MNDO-berechnete π -lonisierungsenergien von 8 (in eV)

8 p

8 x

8 n

In **8n** stehen 1-H und 3-H ekliptisch (oder nahezu so) zur C-2,C-9-Bindung. Dies entspricht der experimentell beobachteten und theoretisch erklärbaren, bevorzugten Konformation von Propen¹⁷⁾.

Trien 10: Prinzipiell sind die homokonjugativen Möglichkeiten in 10 analog den Verhältnissen in 8 zu diskutieren. 10x weist gute, 10n hingegen verschwindende transanulare Überlappungsmöglichkeiten auf. In 10t bietet sich, je nach Verdrillungsgrad unterschiedlich vorteilhaft, π_1 zur Homokonjugation mit π_3 an, während π_2 weder durch through-bond- noch durch through-space-Kopplung beeinflußt werden sollte. Die transanulare Konjugation sollte deshalb bestenfalls einseitig, analog zu 5-Methylennorbornen, ausgebildet sein. Da die Basisorbitalenergien von π_1 und π_3 beide bei $\varepsilon_1 \approx \varepsilon_3 =$ -9.1 eV liegen^{13,18)}, sollte die Aufspaltung 1. Ordnung mit $\beta = -0.4$ eV (vgl. 8) zu zwei π -Niveaus bei etwa -8.9 und -9.3 eV führen. Das unbeeinflußte π_2 -Niveau würde bei etwa -9.1 eV zu finden sein. Das Experiment bestätigt diese Überlegungen (Tab. 3). Bei IE_{1,v} dürfte es sich um die Ionisierung aus ($\pi_3 - \pi_1$) handeln, während die beiden Ionisationsereignisse bei 9.25 eV vermutlich der Entfernung eines Elektrons aus ($\pi_1 + \pi_3$) und π_2 zuzuordnen sind.

Schlußfolgerung

8 (exp)

CB 397/79.2

In offenkettigen Dienen 1 und 2 dominieren die konformationsabhängigen throughspace-Wechselwirkungen mit entsprechenden Konsequenzen für Reaktivität und insbesondere lichtinduzierte Cyclisierung¹³⁾. Dies scheint auch für cyclische Polyene wie 3 zu gelten^{3,19)}. In **8** und **10** wird lediglich eine konformationsbedingte Homokonjugation vom Typ 1 beobachtet. Konformationen, die eine weitreichende direkte Kopplung aller drei π-Bindungen erlauben würden, gehören offensichtlich nicht zu den stabilsten.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie wird für finanzielle Unterstützung, Herrn Dr. W. Wilker, Freiburg i.Br., für die Durchführung einiger Rechnungen, Herrn Prof. Dr. R. Gleiter für die Aufnahme der PE-Spektren von 8 und 9 und den Rechenzentren der Universitäten Würzburg und Freiburg i. Br., für Rechenzeit gedankt.

Experimenteller Teil

Schmelzpunkte: Kofler-Heiztischmikroskop, nicht korrigiert. – NMR-Spektren: Varian EM-360, EM-390. – PE-Spektren: PS-18 Photoelektronenspektrometer (Perkin-Elmer).

2,4-Dimethylenbicyclo[3.2. 1]oct-6-en (8): P_2I_4 (19 g, 33 mmol) wird aus einem Soxhlet-Extraktor mit 300 ml wasserfreiem CS₂ bis zur Farblosigkeit des Rücklaufs extrahiert. Nach Einengen der roten Lösung auf 250 ml versetzt man unter Feuchtigkeitsausschluß tropfenweise mit einer Lösung des Diols 14b⁸) (2.0 g, 12 mmol) in 100 ml wasserfreiem Pyridin. Das braune, trübe Reaktionsgemisch wird 3h zum Sieden erhitzt und bei Raumtemp. 8h stehengelassen. Die Hauptmenge CS₂ wird bei Normaldruck über eine Vigreux-Kolonne entfernt, bis bei einer Badtemp. von etwa 120 °C eine Übergangstemp. von 60 °C erreicht ist. Nach dem Abkühlen wird der Kolbeninhalt mit 300 ml Ether versetzt, filtriert und der Rückstand gewaschen. Die vereinigten Filtrate wäscht man sukzessive mit 200 ml 10proz. Kalilauge, 200 ml 10proz. wäßr. Na₂S₂O₃-Lösung, 200 ml Wasser, 200 ml verd. Schwefelsäure und Wasser bis zur neutralen Reaktion. Nach Trocknen mit Na₂SO₄ und Entfernen des Ethers bei Normaldruck über eine Vigreux-Kolonne wird mit 10 ml Pentan aufgenommen und dieses, um Etherspuren zu beseitigen, auf die gleiche Weise wieder entfernt. Der ölige Rückstand wird mehrmals bei Raumtemp. (0.01 Torr) umkondensiert. Man erhält eine außerordentlich zur Polymerisation neigende Flüssigkeit, die nur bei – 196 °C längere Zeit aufbewahrt werden kann. Ausb. 0.23 g (15 %).

¹H-NMR (CCl₄, 90 MHz): $\delta = 1.55$ (AB-d, J = 10 Hz; 8a-H), 2.05 – 2.30 (quint, J = 5 Hz; 8s-H), 2.64, 2.83 (AB-d, J = 17 Hz; 3-H), 3.00 – 3.20 (m; enthält 1 quint des A-Teils von 3'-H und 1-H, 5-H), 3.30 – 3.40 (quint, J = 2.5 Hz; zum A-Teil von 3'-H gehörig), 4.50 (td, J = 2.5 Hz; $J \approx 1$ Hz; 9c-H, 10c-H oder 9t-H, 10t-H), 4.68 (t, J = 2.5 Hz; 9t-H, 10t-H oder 9c-H, 10c-H), 5.95 (m eng; 6-H, 7-H). – MS (70 eV): m/e = 132 (2%, M⁺), 117 (13, M – CH₃), 104 (2, M – C₂H₄), 91 (100, M – C₃H₅).

exo-Tricyclo[3. 2. 1. $\theta^{2.4}$ Joctan-2, 4-dicarbonsäure-dimethylester (15a): Die Lösung des Diesters 14a⁸) (7.72 g, 35.0 mmol) in 100 ml Ethanol wird mit 12 ml einer 2proz. wäßr. Kupfersulfatlösung versetzt und auf 0°C gekühlt. Nach Zugabe von 22.3 g Hydrazinhydrat (0.35 mol, 80proz.) werden unter Rühren und Eiskühlung 42.2 g Wasserstoffperoxid (0.43 mol, 35proz.) so zugetropft, daß die Gasentwicklung nicht zu heftig wird. Anschließend rührt man 1h bei Raumtemp., läßt 8h stehen, versetzt mit 50 ml Wasser und schüttelt mit Petrolether (40 – 60°C) mehrmals aus. Die organische Phase wird mit verd. Salzsäure, wäßr. NaHCO₃-Lösung und Wasser gewaschen und über Na₂SO₄ getrocknet. Nach Entfernen des Lösungsmittels i. Vak. isoliert man ein farbloses, weitgehend reines Produkt (*endo-exo*-Gemisch, 1:4). Ausb. 5.70 g (73%), Sdp. 78°C/ 0.05 Torr. – ¹H-NMR (CCl₄, 60 MHz): $\delta = 0.60-2.30$ (m; 8H, CH₂), 2.57, 2.85 (m; 2H, CH), 3.65 (s; 6H, OCH₃).

C₁₂H₁₆O₄ (224.2) Ber. C 64.27 H 7.19

Gef. C 64.68 H 7.42 Molmasse 224 (MS)

exo-Tricyclo[3. 2. 1. $\theta^{2,4}$]octan-2,4-dimethanol (15b): Zu LiAlH₄ (4.40 g, 115 mmol) in 50 ml wasserfreiem Ether wird unter Eiskühlung die Lösung von 15a (8.18 g, 36.4 mmol) in 70 ml wasserfreiem Ether getropft. Nach 12stdg. Rühren bei Raumtemp. wird vorsichtig mit Wasser versetzt. Die Etherlösung wird filtriert und der Rückstand zuerst mit Ether, dann mit Methanol ge-

waschen. Man engt das Methanolfiltrat i. Vak. ein und nimmt mit Ether auf. Nach Trocknen der vereinigten etherischen Lösungen über $Na_2SO_4/MgSO_4$ wird das Lösungsmittel i. Vak. entfernt. Es bleiben farblose Kristalle des Diols zurück (*endo-exo-Gemisch*, 1:4). Ausb. 5.20 g (85%), Schmp. 89–91 °C (aus CHCl₃).

¹H-NMR (CDCl₃, 60 MHz): $\delta = 0.1$ (d, J = 6 Hz; 1 H, Dreiring-H), 0.50 - 2.00 (m; 7 H, CH₂), 2.45 (m; 2 H, CH), 3.20 (m; 2 H, OH), 3.43, 3.63, 3.93, 4.10 (AB-q, J = 12 Hz; 4H *exo*, CH₂O), 3.35, 3.55, 4.06, 4.25 (AB-q, J = 12 Hz; 4H *endo*, CH₂O). – MS (70 eV): m/e = 150 (6%, M – H₂O).

2,4-Dimethylenbicyclo[3.2.1]octan (9)²⁰: Diol 15b (2.00 g, 11.9 mmol) und P₂I₄ (19 g, 32 mmol) werden, wie bei 8 beschrieben, umgesetzt. Ausb. 220 mg (12.5%). $^{-1}$ H-NMR (CCl₄, 90 MHz): $\delta = 1.30-2.00$ (m; 6a,b-H, 7a,b-H, 8a,s-H), 2.60-2.80 (m; 1-H, 5-H/AB-d, J = 16 Hz; 3-H), 2.94, 3.20 (dquint, J = 16, J = 2.7 Hz; 3'-H), 4.40 (td, J = 2.7, J = 1 Hz; 9c-H, 10c-H oder 9t-H, 10t-H), 4.51 (t, J = 2.7 Hz; 9t-H, 10t-H oder 9c-H, 10c-H). $^{-1}$ MS (70 eV): m/e = 134 (5%, M⁺), 119 (3, M - CH₃), 91 (100, M - C₃H₇).

C10H14 Ber. 134.1095 Gef. 134.1098 (massenspektrometr.)

endo-Tricyclo[4.2.1. $\theta^{2,5}$]non-7-en-2,5-dicarbonsäure-dimethylester (16a): 1-Cyclobuten-1,2dicarbonsäure-dimethylester (7.50 g, 44.0 mmol), in wenig Ether gelöst, wird mit frisch destilliertem Cyclopentadien (29.6 g, 450 mmol) versetzt und 5d bei Raumtemp. stehengelassen. Nach Entfernen des Lösungsmittels i. Vak. reinigt man das Rohprodukt durch SC (CHCl₃/Kieselgel). Das so erhaltene farblose Öl kristallisiert auf Zugabe von Petrolether (60-70°C) und Eiskühlung. Ausb. 9.10 g (87%), Schmp. 49°C (aus Petrolether).

¹H-NMR (CCl₄, 60 MHz): $\delta = 0.90 - 1.40$, 2.20 - 2.60 (AA'BB'-m; 4H, Cyclobutan), 1.54, 1.69 (AB-d, J = 9 Hz; 1H, CH₂), 1.97, 2.12 (AB-d, J = 9 Hz; 1H, CH₂), 3.05 (m; 2H, Brücken-kopf), 3.65 (s; 6H, OCH₃), 4.50 ("t"; 2H, Olefin-H).

C13H16O4 (236.2) Ber. C 66.08 H 6.83 Gef. C 66.60 H 6.88

endo-Tricyclo[4.2.1. $\partial^{2,5}$]non-7-en-2,5-dimethanol (16b): Die Lösung von 16a (10.9 g, 46.0 mmol) in 50 ml wasserfreiem Ether wird so zu LiAlH₄ (5.0 g, 0.13 mmol) in 100 ml wasserfreiem Ether getropft, daß das Lösungsmittel schwach siedet. Anschließend rührt man 4 h bei Raumtemp. Nach vorsichtiger Hydrolyse wird filtriert und mit Methanol gewaschen. Man engt das Filtrat i. Vak. ein, nimmt mit Ether und verd. Salzsäure auf, trennt die etherische Phase ab, wäscht mit NaHCO₃-Lösung und trocknet über Na₂SO₄. Nach Entfernen des Ethers bleibt farbloses Diol 16b zurück. Die Substanz beginnt bei etwa 110°C merklich zu sublimieren, bei etwas höheren Temperaturen tritt Zersetzung ein. Ausb. 6.90 g (88%).

¹H-NMR (CDCl₃, 60 MHz): $\delta = 0.90 - 1.40$, 1.70 - 2.10 (AA'BB'-m; 4H, Cyclobutan), 1.50 (m; 2H, Brücken-CH₂), 2.50 (m; 2H, Brückenkopf-CH), 3.67 (AB-q, J = 7.4 Hz; 4H, CH₂O), 6.50 ("t"; 2H, Olefin-H).

 $C_{11}H_{16}O_2$ (180.2) Ber. C 73.30 H 8.95 Gef. C 73.00 H 9.02

endo-2,5-Bis(methylsulfonyloxymethyl)tricyclo[4.2.1.0^{2,5}]non-7-en (16c): Zu einer eisgekühlten Lösung von 16b (1.00 g, 6.0 mmol) in 5 ml wasserfreiem Pyridin werden 18 ml (23 mmol) Methansulfonylchlorid gegeben. Nach 3d bei 0°C wird auf Eis gegossen, mit verd. Salzsäure angesäuert und mit Benzol ausgeschüttelt. Waschen, Trocknen und Entfernen des Lösungsmittels liefern gut kristallisierendes 16c. Ausb. 2.20 g (84%), Schmp. 112°C (aus Essigester/Petrolether).

 $C_{13}H_{20}S_2O_6$ (336.3) Ber. C 46.43 H 5.99 S 18.32 Gef. C 46.63 H 5.83 S 18.91 Analog wird das Bis-*p*-toluolsulfonat erhalten, Schmp. 116 °C (aus Essigester).

 $C_{25}H_{28}S_2O_6 \ (488.4) \quad \text{Ber. C 61.47 H 5.78 S 13.10} \quad \text{Gef. C 61.59 H 6.06 S 13.22}$

8-Oxatetracyclo[4.3.2.1.^{2,5}.0^{1,6}]dodec-3-en (16d) und endo-2,5-Bis(chlormethyl)tricyclo[4.2.1.0^{2,5}]non-7-en (16e): Die Lösung von 16b (2.00 g, 0.011 mol) und Triphenylphosphan (11.0 g, 0.044 mol) in 50 ml wasserfreiem CCl₄ wird 14d bei Raumtemp. stehengelassen. Anschließend wird an Kieselgel chromatographiert (9 \times 3 cm, CCl₄). Zuerst wird das Dichlorid 16e, danach der Ether 16d eluiert. Nach Entfernen des Lösungsmittels erstarrt 16e wachsartig, während 16d als charakteristisch riechendes Öl vorliegt. Durch Sublimation bzw. Kurzwegdestillation können 16e bzw. 16d weiter gereinigt werden.

16d: Ausb. 750 mg (41%). - ¹H-NMR (CCl₄, 60 MHz): $\delta = 1.25 - 1.90$ (m; 6H, Brückenund Vierring-CH₂), 2.60 (m; 2H, Brückenkopf-CH), 3.32 (AB-d, J = 9.5 Hz; 2H, CH₂O), 3.77 (AB-d, J = 9.5 Hz; 2H, CH₂O), 6.40 ("t"; 2H, Olefin-H). - MS (70 eV): m/e = 162 (60%, M⁺), 132 (41, M - CH₂O), 117 (93, M - C₂H₅O), 96 (100, M - C₅H₆, Retro-Diels-Alder).

C11H14O Ber. 162.1044 Gef. 162.1050 (massenspektrometr.)

16e: Ausb. 160 mg (6.7%). $-{}^{1}$ H-NMR (CCl₄, 60 MHz): $\delta = 1.00 - 1.95$ (m; 6H, Brückenund Vierring-CH₂), 2.85 (m; 2H, Brückenkopf-CH), 3.40 (AB-d, J = 11 Hz; 2H, CH₂Cl), 3.78 (AB-d, J = 11 Hz; 2H, CH₂Cl), 6.35 ("t"; 2H, Olefin-H). - MS (70 eV): m/e = 216, 218, 220 (20, 13, 2%, M⁺), 181 (65, M - Cl), 167 (66, M - CH₂Cl), 131 (61, M - CH₂Cl, HCl), 66 (100, M - 150, Retro-Diels-Alder).

 $C_{11}H_{14}Cl_2$ Ber. 216.0472 Gef. 216.0466 (massenspektrometr.)

2,5-Dimethylenbicyclo[4.2. 1[non-7-en (10): Eine Suspension aus 16c (2.85 g, 8.0 mmol), aktiviertem Zink (1.80 g, 27 mmol) und wasserfreiem KBr (4.20 g, 35 mmol) in 30 ml wasserfreiem DMSO wird 52h bei 80°C unter N₂ und Feuchtigkeitsausschluß gerührt. Nach weiterem 18stdg. Rühren bei Raumtemp. wird filtriert und mit Pentan gewaschen. Die organische Phase wird mit Wasser ausgeschüttelt, über Na₂SO₄ getrocknet und unter N₂ bei Normaldruck an einer Vigreux-Kolonne eingeengt. Den Rückstand chromatographiert man an einer auf 0°C gekühlten Säule (Kieselgel, Pentan). Zuerst werden etwa 220 mg 10 eluiert, die mit 7% einer isomeren Verbindung (vermutlich Tetracyclo[4.2.2.1^{2,5}.0^{1,6}]undec-3-en²¹) verunreinigt sind, dann folgt reines Trien 10. Die Substanz ist unbeständig und polymerisiert allmählich. Ausb. 210 mg (18%), Rohausb. 430 mg (35%).

¹H-NMR (CCl₄, 60 MHz): $\delta = 1.70 - 2.20$ (m; 2H, Brücken-CH₂), 2.25 (s; 4H, allylische CH₂), 3.35 (dm, J = 6 Hz; 2H, Brückenkopf-CH), 4.60 (m; 4H, =CH₂), 5.65 (m; 2H, =CH-). - MS (70 eV): m/e = 146 (70 %, M⁺), 131 (52, M - CH₃), 117 (35, M - C₂H₅), 105 (24, M - C₃H₅), 91 (100, M - C₄H₇).

endo-Tricyclo[4.2.1.0^{2,5}]nonan-2,5-dicarbonsäure-dimethylester (17a): Wie bei 15a wird 16a (8.40 g, 0.035 mol) mit 19.0 g Hydrazinhydrat (0.30 mol, 80proz.), 1 ml 2proz. wäßr. CuSO₄-Lösung und 35.4 g Wasserstoffperoxid (0.36 mol, 35proz.) umgesetzt. Man erhält ein farbloses Öl, das nach einiger Zeit kristallisiert. Ausb. 7.90 g (93%), Schmp. 40°C.

endo-Tricyclo[4.2.1. $0^{2,5}$]nonan-2,5-dimethanol (17b): Wie bei 16b wird 17a (2.00 g, 8.40 mmol) in 30 ml wasserfreiem Ether mit LiAlH₄ (7.00 g, 0.18 mol) in 50 ml Ether reduziert. Ausb. 1.10 g (72 %), Schmp. 163 °C (aus Essigester/Petrolether).

C₁₁H₁₈O₂ (182.2) Ber. C 72.49 H 9.95 Gef. C 72.26 H 10.02

endo-2,5-Bis(methylsulfonyloxymethyl)tricyclo[4.2.1.0^{2,5}]nonan (17c): Wie bei 16c wird 17b (1.00 g, 5.60 mmol) mit Methansulfonylchlorid umgesetzt. Es fällt ein rotes Öl an, das in Essigester über Celite und Aktivkohle filtriert wird. Einengen des Filtrates und Versetzen mit Ether ergibt farblose Kristalle. Ausb. 600 mg (31%), Schmp. 83 °C.

 $C_{13}H_{22}O_6S_2 \ (338.4) \quad Ber. \ C \ 46.13 \ H \ 6.55 \ S \ 18.94 \quad Gef. \ C \ 45.35 \ H \ 6.28 \ S \ 18.67$

2,5-Dimethylenbicyclo[4.2.1]nonan (11): Eine Suspension aus 17c (2.20 g, 6.50 mmol), aktiviertem Zink (1.32 g, 20.1 mmol) und wasserfreiem KBr (3.00 g, 25.2 mmol) in 40 ml wasserfreiem DMSO wird 60h bei 90 °C unter N $_2$ und Feuchtigkeitsausschluß gerührt. Anschließend filtriert man, wäscht mit Pentan, schüttelt die organische Phase mit Wasser aus und trocknet über Na2SO4. Das Pentan wird bei Normaldruck abdestilliert und der Rückstand bei 0.01 Torr umkondensiert. Destillation im Wasserstrahlvakuum liefert ein farbloses, unbeständiges Öl, das laut NMR-Analyse nicht einheitlich ist und zur Polymerisation neigt. Der Versuch einer GC-Reinigung führte zu erheblicher Zersetzung. Ausb. 152 mg (15%), Sdp. 65-75°C/17 Torr.

¹H-NMR (CCl₄, 60 MHz): $\delta = 1.00 - 2.50$ (m; 6H + Nebenprodukt, CH₂), 2.30 (s; 4H, allylische CH₂), 2.98 (m; 2H, Brückenkopf-CH), 4.63 (m; 4H). - MS (70 eV): $m/e = 148 (2\%, M^+)$, 91 (100, M $- C_4 H_9$).

C₁₁H₁₆ Ber. 148.1252 Gef. 148.1250 (massenspektrometr.)

Literatur

- ¹⁾ ^{1a)} Aus der Dissertation C. Heller, Univ. Würzburg 1980. Kleine und mittlere Ringe, 36. Mitteil., 35. Mitteil.: H.-D. Martin und C. Heller, Monatsh. Chem. 110, 1271 (1979). - 1b) Chemisches Laboratorium der Universität Freiburg i. Br.
- 2) J.M. Greenwood, M.D. Solomon, J.K. Sutherland und A. Torre, J. Chem. Soc. C 1968, 3004.
- 3) J.K. Sutherland, Tetrahedron 30, 1651 (1974), und dort zit. Lit.
- ⁴⁾ E. Heilbronner und H.-D. Martin, Helv. Chim. Acta 55, 1490 (1972); R. W. Hoffmann, R. Schüttler, W. Schäfer und A. Schweig, Angew. Chem. 84, 533 (1972); Angew. Chem., Int. Ed. Engl. 11, 512 (1972).
- ⁵⁾ R. Hoffmann, Acc. Chem. Res. 4, 1 (1971).
- ⁶ P. Bischof, R. Gleiter und E. Heilbronner, Helv. Chim. Acta 53, 1425 (1970). Vgl. dort auch die Diskussion anderer m-Werte.
- 7) H. Kessler und W. Ott, Tetrahedron Lett. 1974, 1383; T. Hanafusa, S. Imai, K. Ohkata, H. Suzuki und Y. Suzuki, J. Chem. Soc., Chem. Commun. 1974, 73.
- 8) T. Toda, K. Nakano, A. Yamae und T. Mukai, Tetrahedron 31, 1597 (1975).
- 9) D. Bellus, K. v. Bredow, H. Sauter und C. D. Weis, Helv. Chim. Acta 56, 3004 (1973).
- ¹⁰⁾ P.S. Wharton und G.O. Spessard, J. Org. Chem. 37, 550 (1972).
- ¹¹⁾ ^{11a)}S. Sternhell, Q. Rev., Chem. Soc. 23, 236 (1969). ^{11b)} M. Barfield, R. J. Spear und S. Sternhell, Chem. Rev. 76, 593 (1976).
- ¹²) Bevorzugte endo-Konformationen sind in der Bicyclo[3.2.1]octan-Reihe bekannt: C. W. Jefford, D. T. Hill und J. Gunsher, J. Am. Chem. Soc. 89, 6881 (1967); J. Fournier und B. Waegell, Tetrahedron 28, 3407 (1972); E. M. Engler, J. D. Andose und P. v. R. Schleyer, J. Am. Chem. Soc. 95, 8005 (1973); vgl. auch Lit.^{16a)}.
- ¹³⁾ P. Hemmersbach, M. Klessinger und P. Bruckmann, J. Am. Chem. Soc. 100, 6344 (1978); S.A. Cowling, R.A. W. Johnstone, A.A. Gorman und P.G. Smith, J. Chem. Soc., Chem. Commun. 1973, 627; J. C. Bünzli, A. J. Burak und D. C. Frost, Tetrahedron 29, 3735 (1973); C. Batich, P. Bischof und E. Heilbronner, J. Electron. Spectrosc. Relat. Phenom. 1, 333 (1972/73).
- ¹⁴⁾ Eine Geometrieoptimierung mit der MNDO-Methode ergibt für 8 eine weitgehend planare Struktur 8p mit $\Delta H_f^{\circ} = 51.9$ kcal/mol. Dieses Resultat ist jedoch aufgrund bekannter Tendenz des Verfahrens, planare Anordnungen zu begünstigen¹⁵), mit Vorsicht zu bewerten. ¹⁵ M.J.S. Dewar und W. Thiel, J. Am. Chem. Soc. **99**, 4899, 4907 (1977).
- 16) 16a) N.L. Allinger, M.T. Tribble, M.A. Miller und D.H. Wertz, J. Am. Chem. Soc. 93, 1637 (1971). - 16b) D.N.J. White und M.J. Bovill, J. Chem. Soc., Perkin Trans. 2 1977, 1610.
- 17) A. Veillard in Quantum Mechanics of Molecular Conformations (B. Pullman), S. 27, John Wiley & Sons, London 1975.
- ¹⁸ K.B. Wiberg, G.B. Ellison, J.J. Wendolowski, C.R. Brundle und N.A. Kuebler, J. Am. Chem. Soc. 98, 7179 (1976); P. Asmus und M. Klessinger, Tetrahedron 30, 2477 (1974); H.-D. Martin, C. Heller und J. Werp, Chem. Ber. 107, 1393 (1974).
- 19) H.-D. Martin und B. Albert, noch unveröffentlicht.
- ²⁰⁾ 9 kann auch durch Thermolyse eines tetracyclischen Propellans erhalten werden: D. H. Aue und R.N. Reynolds, J. Org. Chem. 39, 2315 (1974).
- ²¹⁾ K. B. Wiberg, G. J. Burgmaier und P. Warner, J. Am. Chem. Soc. 93, 246 (1971).